
T H E  E F F E C T  O F  L I Q U I D  F L O W  S W I R L  ON T H E  

I N T E N S I F I C A T I O N  O F  C O N V E C T I O N  H E A T  T R A N S F E R  

IN A CIRCULAR CYLINDRICAL TUBE 
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We presen t  the resu l t s  f r o m  an analyt ical  study of the dis tr ibut ion of veloci t ies  and hea t -  
t r a n s f e r  c h a r a c t e r i s t i c s  for  a single case  of vor tex  flow in a c o m p r e s s i b l e  ideal liquid, 
under  the condition that the vo r t ex /ve loc i ty  vec to r  ra t io  is constant .  We examine the effect  
of flow swir l ing  on the intensif icat ion of heat  t r a n s f e r  under  the conditions of the internal  
p rob l em.  

A method of improving the heat-engineering characteristics of industrial liquid heat exchanges in- 
volves the utilization of a swirling flow. Technologically, this is accomplished rather simply by employing 
various types of external or internal swirlers. However, the complex nature of the convection heat transfer 
which proceeds under conditions of mutual application of forced motions compels us to resort primarily 
to experimental methods of investigation. From the experimental aspect, this problem -whether for one- 
or two-phase flows - has therefore been studied rather thoroughly [1-4]. However, the development of theo- 
retical concepts and the determination of quantitative values for the heat flows in a stream of a liquid or 
gas is, as yet, far from concluded. 

In this connection, we should cite references [4-6], in which the authors provide a theoretical scheme 
for the calculation of the friction and heat-transfer characteristics for the developed turbulent motion of 
a flow with constant swirling. 

We propose a theoretical scheme for the study of the velocity fields and heat-transfer characteristics 
under the condition that the vortex/velocity vector ratio is constant. Here particular attention is devoted 
to examining the effect of liquid flow swirl on the intensification of the convection heat transfer in the case 
of forced flow convection in tubes. The studies are carried out in a range of variation in Re from i �9 102 to 
i �9 105, i.e., to the limit of completely developed turbulent motion. 

1. In cylindrical coordinates, let us examine the steady-state two-parameter motion of a swirled liquid 
flow in a circular cylindrical tube of radius r whose walls are kept at a temperature T t. The liquid entering 
the tube at a specified pressure distribution exhibits the temperature T0(Y ). We will assume that at the inlet 
section the longitudinal velocity component u x is constant, and that the flow swirl velocity u 0 is proportional 
to the radius. 

Let the liquid flow in the tube satisfy the Gromeki--Beltrami condition [7]: 

Q~ _ '  ~ _ ~o )~ ( 1 )  

u x ug uo 2 

Proceeding  f r o m  the genera l  gas dynamic equations for  an ideal liquid, taken in the L a m b - G r o m e k i  form,  
with condition (1) we obtain the requ i red  s y s t e m  of equations: 

0 a 
a-~- (Y~"~) + ~ (YP"~) = o, (2) 

~ ~ + ~ = k - : -  + - -  - -  , (3) 
v av ~ ay ! 
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It has been taken into considerat ion in Eqs. (2)-(10) that the flow pa rame te r s  are  independent of 0, i.e., 
they are  functions exclusively of the coordinates x and y. The x-axis  coincides with the tube axis and is di-  
rected in the direction of the flow, while the y-axis  is directed along the tube radius.  In Eq. (2) we have 
neglected the dissipated heat [8], while in Eqs. (6) and (7), in the light of the forced motion, we have neglect -  
ed the mass forces .  Equations (8)-(10) represent  nothing other  than condition (1), writ ten in projections 
onto the indicated coordinate axes. 

We see from Eqs. (3)-(5) that to find the tempera ture  fields and the coefficients of thermal  conduc- 
tivity, and then the heat-flow coefficient, we must f i rs t  determine the velocity field, the density, and the 
p res su re .  

2. Let us substitute the values of u x and Uy f rom relationships (8) and (9) into (10). 
ple t ransformat ions ,  to determine u 0 we derive the equation 

_ 0 2 U o c ~ u o l O u o (  1 ) 
Ox 2 + _ _  + + ~2 uo = O. 

O f  g Og g2 

Here, after s i m -  

(11) 

We will seek its solution for the boundary conditions 

uo(0, g ) = % g ,  uo(x, 0 ) = 0 ,  uo(x, r )=%r ,  (12) 

as well as under the condition that the function u 0 is bounded and that the value of u x is constant at the inlet 
c ross  section. 

Let us introduce the new function 

�9 (x, g) = u o (xg) --  %g (13) 

and we will substitute its value into Eq. (11) and into the boundary conditions (12), following which we have 

020 0RD 1 0 0 (  -~-2) (14) 
Ox-- ~ -  + - 4- _ _  + ~2 �9 : -  ~Oo~2g, Og 2 g Og 

0(0, v)=0, O(x, 0)=0, o(x, r)=0.  (lS) 

Applying the method separat ing variables ,  we will seek the solution to Eq. (14) under conditions (15) in 
the form of a ser ies  which can be differentiated twice t e rm by t e r m  with respect  to x and y, 

�9 (x, y) = ~ O n (x) Z t (~ng), (16) 

where J/(PnY) is a Bessel  function of the f i rs t  kind. Here the eigenfunetions JI(tzny ) have been derived f rom 
the solution of the uniform equation corresponding to Eq. (14), and f rom the boundary conditions with respect  
to the variable y. The eigennumbers t~ n = ~<n/r in this case are determined in t e rms  of the roots of the 
t ranscendental  equation Jl(Xn) = 0. 
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Subst i tut ion of s e r i e s  (16) into Eq. (14) y ie lds  

[(Dn (x) - -  (bt 2 - -  ~2) (D n (x)] J,(Fng) = - -  c%~?g. 
t t ~  I 

07) 

Hence we have 

�9 ~ (x) - ( ~ -  ~)  ~ .  (x) = c . ,  

w h e r e  C n a r e  the F o u r i e r - B e s s e l  coef f ic ien ts  fo r  the hmet ion  (-w0~2y), i .e . ,  
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The solut ion to Eq. (18) for  the bounda ry  condi t ions  (15) with r e s p e c t  to the v a r i a b l e  x is found in the 

(I)n (x) 2(oor~, ~ [exp ( - -  V ' ~  x) - -  1] (19) 
- .  ( ~ ] -  ~)  Jo (• 

Thus the sought  solut ion to Eq. (11) unde r  the boundary  condi t ions  (12), with cons ide ra t i on  of r e l a t i o n -  
ships  (13), (16), and (19), is wr i t t en  as 

co 

n = i  

w h e r e  

2(o0;~r3 ~ ' ~2 _ ~ r  2 

L n =  •215215 ' b,, r 

Ser ies  (20) and the s e r i e s  de r ived  a f t e r  twice  d i f fe ren t ia t ing  that  s e r i e s  t e r m  by t e r m  with r e s p e c t  to x and 
y c o n v e r g e  un i fo rmly .  As a p roo f  it is suf f ic ient  to note  that  they a re ,  r e s p e c t i v e l y ,  m a j o r i z e d  by absolu te ly  

co 

converging series composed of the absolute values of their eoeffieients__ /I I, V 12  2r/ nJ0( ntl, etc. 
I i = 1  f t = l  

With cons ide ra t i on  of (20), f r o m  re l a t ionsh ips  (8) and (9) we will  have  

ux -- Jr - [exp (-- b~x) -- I] Jo Xr -g (2 i) 

~ - -  [exp (-- b~x)] Ji �9 (22) 

Equat ion (22) shows that  the r e su l t i ng  solut ion of the p r o b l e m  does not  con t r ad i c t  the condi t ion of non-  
p a s s a g e  at the tube wall ,  i .e . ,  Uy = 0 when y r ,  while (21) for  x = 0 and given va lues  of u x and Uy makes  it 
poss ib l e  to d e t e r m i n e  the coef f ic ien t  of  flow in tens i ty  k.  

3. Fo r  c e r t a i n  va lues  of u x and Uy the change in dens i ty  can now be found f r o m  Eq. (2) which,  in the 
light of  condi t ions  (8) and (9), a s s u m e s  the f o r m  

0p 
Op _ ~ u ~ _ _  = 0 .  

ux ~ , 0y 
(23) 

The aux i l i a ry  s y s t e m  of o r d i n a r y  d i f ferent ia l  equat ions is wr i t t en  [9] in the f o r m  

dx dy _ dp 
u x uy 0 

(24) 
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I ts  f i r s t  i n t e g r a l s  a r e  

The fo l lowing  funct ion  wi l l  then s e r v e  as  the  g e n e r a l  s o l u t i o n  fo r  the  o r i g i n a l  equa t ion  (23), in a f o r m  
s o l v e d  fo r  p: 

r t ~ l  

w h e r e  F is  an a r b i t r a r y  d i f f e r e n t i a b l e  func t ion .  

The s o l u t i o n  which  s a t i s f i e s  the  i n i t i a l  cond i t ion  p(0, y) = f(Y), as  fo l lows  f r o m  the  s p e c i f i e d  d i s t r i b u -  
t ion  of p r e s s u r e  and t e m p e r a t u r e  in the  in le t  c r o s s  s e c t i o n ,  is  w r i t t e n  in the  f o r m  

p = f y 2  1 L~ [1 - -  exp ( - -  b~x)] yJ, . (26) 

s  n ~ 1 

The p r e s s u r e  d i s t r i b u t i o n  in the  flow wi l l  now d e t e r m i n e  Eqs .  (6) and (7), f r o m  which  we have  

w h e r e  C is  the  i n t e g r a t i o n  cons t an t  which  we can a s s u m e  to be known fo r  a s p e c i f i e d  va lue  of the  t e m p e r a -  
t u r e  T1, wi th  c o n s i d e r a t i o n  of r e l a t i o n s h i p  (26) fo r  y = r ,  i . e . ,  

Y 

The t e m p e r a t u r e  f i e ld  in the  l iquid  f low,  s a t i s f y i n g  the  b o u n d a r y  cond i t ions  T(0, y) = T0(Y), and T (x, r)  - T1, 
w i l l  be  d e t e r m i n e d  by  r e l a t i o n s h i p  (5). Equa t ion  (3) wi l l  then  d e t e r m i n e  the c o e f f i c i e n t  of t h e r m a l  c o n d u c -  
t i v i t y ,  whi le  Eq. (4) wi l l  g ive  us  the  hea t  f low.  When k = cons t ,  the r e l a t i o n s h i p  fo r  the  hea t  f low a s s u m e s  the 
f o r m  

OT aT ) 

q - -  02_~T _}_ 0~T + 1 0_ T - ~ x  -t- , , (29) 

Ox ~ Of g Og 

w h e r e  the  p a r a m e t e r s  Ux, Uy, p, p, and T a r e ,  r e s p e c t i v e l y ,  d e t e r m i n e d  by r e l a t i o n s h i p s  (21), (22), (26), 
(27), and (5). 

We no te  tha t  to d e t e r m i n e  the  t e m p e r a t u r e ,  i n s t e a d  of (5) we can  use  the  equa t ion  of s t a t e  which  would  
d e s c r i b e  the  p h y s i c a l l y  mos t  r e a l i s t i c  p r o c e s s .  

We s e e  f r o m  the  above  tha t  a s w i r l i n g  flow is  c h a r a c t e r i z e d  p r i m a r i l y  by  the p r o f i l e  Of the  t a n g e n t i a l  
v e l o c i t y  c o m p o n e n t .  Depending  on the  change s  of  the  l a t t e r ,  we d e t e r m i n e  the t h e r m a l  c h a r a c t e r i s t i c s ,  the 
f low s t r u c t u r e ,  and the  ex ten t  of the  s w i r l i n g .  In t u rn ,  the  va lue  of u 0 is  found to be  d i r e c t l y  dependen t  on 
the  a n g u l a r  v e l o c i t y  r o r ,  in o t h e r  w o r d s ,  dependen t  on the angle  at  which  the f low of the  w o r k i n g  m e d i u m  
is  s u p p l i e d .  It is  fo r  th i s  r e a s o n  tha t  we wi l l  s u b s e q u e n t l y  dwel l  on an i n v e s t i g a t i o n  of the  i n t e r r e l a t i o n s h i p  
be tween  the  i n t e n s i f i c a t i o n  of h e a t  t r a n s f e r  and the a n g u l a r  v e l o c i t y  co 0- 

A n  e x a m i n a t i o n  of  r e l a t i o n s h i p  (29) shows  tha t  the  h e a t  flow i n c r e a s e s  wi th  a r i s e  in w 0. I n t e n s i v e l y  
s w i r l e d  f lows of the  m e d i u m  p r o d u c e  the  g r e a t e s t  e f fec t  of i n c r e a s i n g  h e a t  t r a n s f e r  in th i s  c a s e ,  and th is  
i n t e n s i f y i n g  e f fec t  is  a l l  the  m o r e  p e r c e p t i b l e  at  the  in le t  s e g m e n t  of the  tube .  

Wi thou t  dwe l l ing  h e r e  on an e x a m i n a t i o n  of the  p o s s i b l e  s p e c i a l  c a s e s  of flow and hea t  t r a n s f e r ,  in 
c o n c l u s i o n  we wi l l  o f fe r  a c l a r i f y i n g  e x a m p l e  on the b a s i s  of ou r  c o n c l u s i o n s  fo r  the  r e s u l t s  of the  c a l c u l a -  
t ions  wi th  f o r m u l a  (29) fo r  a i r  a t  the  fo l lowing  p a r a m e t e r  v a l u e s :  T o = 400~ T 1 = 350~ Cp = 1.07 �9 103 J 
/ k g . d e g ,  # = 2 . 1 8 . 1 0  -5 k g / m . s e c ,  r = 0~05 m, R = 8.317 J / d e g .  mo le  f o r x  > 0, y - 0.99 r ,  and P0 = 1/RT0 
( 1 0 4 - 0 . 1 y ) ,  w 0 v a r y i n g  f r o m  l to 600 1 / s e c .  We found the va lue  of ~ n  and the n e c e s s a r y  v a l u e s  af the func -  
t ions  J0 and J~ f r o m  the t a b l e s  in [10]. 
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Fig. 1o A change in q, in c a l / c m ,  sec, as a function of w0, in 1 
/ s ec ,  at var ious points in the tube: a - 1) for x = 3; 2) 6; 3) 9; 4) 
20; 5) 50; 6) 70; and as a function of x, in cm, along the walls of 
the tube: b - 1) for w 0 = 1; 2) 4; 3) 8; 4) 40; 5) 80; 6) 240; 7) 400. 

Because the tempera ture  and velocity fields were formulated gradually,  in calculating the resul ts  shown 
in Fig. 1 we failed to take into considerat ion the inlet segment  which is equal to r / 2 .  In finding the flow 
pa ramete r s  we took into considerat ion two t e rms  of the se r i es .  The calculation that were ca r r i ed  out with 
considerat ion of three and four t e r m s  of the ser ies  showed that the difference between the success ive  ap-  
proximations is ve ry  small  (agreement up to four significant f igures).  This indicates the rapid convergence 
of the se r i es .  All of the determined integrals with respec t  to the var iable  y were found numerica l ly  in the 
caIculations on the basis of the general  Simpson formula.  

A study of formula (29) and our calculations show that the qualitative aspect of the problem with r e -  
gard to the change in the heat flow is in good agreement  with the experimental  formula  in [1, 2] and with 
the general ized theoret ical  formula  (4.1) in reference  [11]. However, the absence of special  experimental  
data defining the heat flow under specified conditions prevents us f rom undertaking a direct  quantitative 
evaluation. 

4. It follows f rom an examination of these resul ts  that significant intensification effect is reduced 
slightly with an increase  in the Reynolds number .  

The studies of the hea t - t r ans fe r  resul ts  will probably be more valid for the core of the flow, since 
it is in this region that the viscosi ty  effect is less perceptible.  However, it is not surpr i s ing  that the form 
of the motion here  was found to resemble  the motion of a liquid devoid of viscosi ty .  As had been demon- 
s t ra ted by Milovich [12], this is because the imposition of condition (1) on the flow automatically introduces 
an actual v iscosi ty  effect. 

The theoret ical  formulas derived above enable us most  s imply to establish the quantitative re la t ion-  
ships governing the change in heat flow f rom the kind and tempera ture  of the liquid, f rom the velocity and 
regime of the flow, f rom the d iameter  and length of the tube, etc. The excellent agreement  in the quali ta-  
tive picture of the change in the heat flow can be regarded as confirmation of the fact that the analysis p ro -  
cedure had been proper ly  chosen. 

~2x, f~Y, f~0 
Ux, Uy, u0 
X = const 
T is the 
p is the 
p is the 
q is the 
k is the 
Cp is the 

o = const is the 
R is the 
u 2 = u  x~ +u} +u~. 

NOTATION 

are the vortex components; 
are the velocity vector components; 
is the flow intensity coefficient; 

temperature; 
pressure; 
density; 
specific heat flow; 
coefficient of thermal conductivity; 
specific heat capacity; 
angular velocity of the flow; 
gas constant; 
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