THE EFFECT OF LIQUID FLOW SWIRL ON THE
INTENSIFICATION OF CONVECTION HEAT TRANSFER
IN A CIRCULAR CYLINDRICAL TUBE

V. P. Kharitonov UDC 536.242:536.25

We present the results from an analytical study of the distribution of velocities and heat-
transfer characteristics for a single case of vortex flow in a compressible ideal liquid,
under the condition that the vortex/velocity vector ratio is constant., We examine the effect
of flow swirling on the intensification of heat transfer under the conditions of the internal
problem,

A method of improving the heat-engineering characteristics of industrial liquid heat exchanges in-
volves the utilization of a swirling flow. Technologically, this is accomplished rather simply by employing
various types of external or internal swirlers. However, the complex nature of the convection heat transfer
which proceeds under conditions of mutual application of forced motions compels us to resort primarily
to experimental methods of investigation., From the experimental aspect, this problem — whether for one-
or two-phase flows — has therefore been studied rather thoroughly [1-4]. However, the development of theo-
retical concepts and the determination of quantitative values for the heat flows in a stream of a liquid or
gas is, as yet, far from concluded.

In this connection, we should cite references [4-6], in which the authors provide a theoretical scheme
for the calculation of the friction and heat-transfer characteristics for the developed turbulent motion of
a flow with constant swirling.

We propose a theoretical scheme for the study of the velocity fields and heat-transfer characteristics
under the condition that the vortex/velocity vector ratio is constant, Here particular attention is devoted
to examining the effect of liquid flow swirl on the intensification of the convection heat transfer in the case
of forced flow convection in tubes. The studies are carried out in a range of variation in Re from 1.10% to
1.10°, i.e., to the limit of completely developed turbulent motion,

1. In cylindrical coordinates, let us examine the steady-state two-parameter motion of a swirled liquid
flow in a circular cylindrical tube of radius r whose walls are kept at a temperature Ty. The liquid entering
the tube at a specified pressure distribution exhibits the temperature T,fy). We will assume that at the inlet
section the longitudinal velocity component uy, is constant, and that the flow swirl velocity u P is proportional
to the radius.

Let the liguid flow in the tube satisfy the Gromeki~Beltrami condition [7]:
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Proceeding from the general gas dynamic equations for an ideal liquid, taken in the Lamb —Gromeki form,
with condition (1) we obtain the required system of equations:
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It has been taken into consideration in Eqs, (2)~(10) that the flow parameters are independent of ¢, i.e.,
they are functions exclusively of the coordinates x and y. The x-axis coincides with the tube axis and is di-
rected in the direction of the flow, while the y-axis is directed along the tube radius. In Eq. (2) we have
neglected the dissipated heat [8], while in Egs. (6) and (7), in the light of the forced motion, we have neglect-
ed the mass forces, Equations (8)-(10) represent nothing other than condition (1), written in projections
onto the indicated coordinate axes.

We see irom Eqgs. (3)-(5) that to find the temperature fields and the coefficients of thermal conduc-
tivity, and then the heat-flow coefficient, we must first determine the velocity field, the density, and the
pressure,

2. Let us substitute the values of u, and Uy from relationships (8) and (9) into (10). Here, after sim-
ple transformations, to determine u o Ve derive the equation
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We will seek its solution for the boundary conditions
Ug (0! y) = Wy !_/, Up (X, 0) = 07 Up ()C, f) = ‘90”’ (12)

as well as under the condition that the function u 6 is bounded and that the value of uy is constant at the inlet
cross section,
Let us introduce the new function

O (x, y) = ug (xy) — 0y (13)

and we will substitute its value into Eq. (11) and into the boundary conditions (12), following which we have

PO 0D 1 oD 1 "
4L 2 L) o= —apy, (14)
e T o Ty oy +( P ) oty
OO, ) =0, D(x, =0, D(x, )=0. (15)

Applying the method separating variables, we will seek the solution to Eq. (14) under conditions (15) in
the form of a series which can be differentiated twice term by term with respect to x and y,

D(x, Y)= B Oy (), (a9, (16)
n=1
where Jy (4, y) is 2 Bessel function of the first kind, Here the eigenfunctions J; (4,y) have been derived from
the solution of the uniform equation corresponding to Eq. (14), and from the boundary conditions with respect

to the variable y. The eigennumbers By = %n/r in this case are determined in terms of the roots of the
transcendental equation Jy(n,) = 0.
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Substitution of series (16) into Eq. (14) yields

8
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Hence we have
Dp (1) — (47— 4) @y (x) = C,, (18)

where C, are the Fourier —Bessel coefficients for the function (~wply), i.e.,
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The solution to Eq, (18) for the boundary conditions (15) with respect to the variable x is found in the
form
200rA2 [exp (— V' pE— 22x) — 1]
o (B2 — 1) I3 ()
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Thus the sought solution to Eqg. (11) under the boundary conditions (12), with consideration of relation-
ships (13), (16), and (19), is written as

o (5 ) = ooy X Ly fexp (b9 — 1], (L2t ) , (20)
n=1 r
where
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Series (20) and the series derived after twice differentiating that series term by term with respect to x and
y converge uniformly. As a proof it is sufficient to note that they are, respectively, majorized by absolutely

converging series composed of the absolute values of their coefficients };ﬂ ILnl, EiZw Oxzr/unJo(%n)l, etc,

n=1 h=1

With consideration of (20), from relationships (8) and (9) we will have

wy— 200 LNY s 1]y, (22 ) (21)
A A P r r
o= 3 el fep(—b,0] 4, (2. 2)
n=1{

Equation (22) shows that the resulting solution of the problem does not contradict the condition of non-
passage at the tube wall, i.e., uy = 0 when y = r, while (21) for x = 0 and given values of uy and uy makes it
possible to determine the coefficient of flow intensity A.

3. For certain values of uy and Uy the change in density can now be found from Eq. (2) which, in the
light of conditions (8) and (9), assumes the form

w2y % _y, 23)
ox oy

The auxiliary system of ordinary differential equations is written [9] in the form
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=
j N
-
o

= 20
Uy Uy, 0

(24)
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Its first integrals are

p=Cu —af+ ¥ L1 —exp(—5,9) yJ,( b ) ~C,
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The following function will then serve as the general solution for the original equation (23), in a form
solved for p:

p=F [——woy“r E Ly (1 —exp (—b,x)) yl, ( *nd ) ] , (25)
n=l1

r

where F is an arbitrary differentiable function,

The solution which satisfies the initial condition p(0, y) = f(y), as follows from the specified distribu-
tion of pressure and temperature in the inlet cross section, is written in the form

P :-f(‘/—yz— —031: SLH[I—exp(»—bﬂx)] 9l (“:y) ) (26)
n=1 T

The pressure distribution in the flow will now determine Eqgs. (8) and (7), from which we have

o g (oo e

dx 2

where C is the integration constant which we can assume to be known for a specified value of the tempera-
ture Ty, with consideration of relationship (26) fory =, i.e.,

oy
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The temperature field in the liquid flow, satisfying the boundary conditions T(0, y) = Ty(y), and T(, r) = Ty,
will be determined by relationship (5). Equation (3) will then determine the coefficient of thermal conduc-
tivity, while Eq. @) will give us the heat flow, When k = const, the relationship for the heat flow assumes the
form

c(u 27-1-|—uiT—
L Plp | e == yay___ 6T+6T) (29)
T e T T T \ax oy )

ox® 0P y Oy

where the parameters ug, u,, o, p, and T are, respectively, determined by relationships 21), 22), (26),
(27), and (5).

We note that to determine the temperature, instead of (5) we can use the equation of state which would
describe the physically most realistic process.

We see from the above that a swirling flow is characterized primarily by the profile of the tangential
velocity component, Depending on the changes of the latter, we determine the thermal characteristics, the
flow structure, and the extent of the swirling. In turn, the value of u 0 is found to be directly dependent on
the angular velocity w, or, in other words, dependent on the angle at which the flow of the working medium
is supplied. It is for this reason that we will subsequently dwell on an investigation of the interrelationship
between the intensification of heat transfer and the angular velocity wg.

-An examination of relationship (29) shows that the heat flow increases with a rise in w;. Intensively
swirled flows of the medium produce the greatest effect of increasing heat transfer in this case, and this
intensifying effect is all the more perceptible at the inlet segment of the tube.

Without dwelling here on an examination of the possible special cases of flow and heat transfer, in
conclusion we will offer a clarifying example on the basis of our conclusions for the results of the calcula-
tions with formula 29) for air at the following parameter values: T, =400°C, T; = 350°C, cp = 1.07 - 103 J
/kg .deg, p =2.18-107% kg/m .sec, r = 0.05 m, R = 8.317 J/deg - mole for x > 0, y = 0.99 r, and p, = 1/RT,
(10%—0.1y), w, varying from 1 to 600 1/sec. We found the value of Yy, and the necessary values of the func-
tions J; and J; {rom the tables in [10].
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Fig.1. A change in ¢, in cal/cm-sec, as a function of wy, in 1
/sec, at various points in the tube: a — 1) for x = 3; 2) 6; 3) 9; 4)
20; 5) 50; 6) 70; and as a function of x, in cm, along the walls of
the tube: b — 1) for wy = 1; 2) 4; 3) 8; 4) 40; 5) 80; 6) 240; 7) 400,

Because the temperature and velocity fields were formulated gradually, in calculating the results shown
in Fig.1 we failed to take into consideration the inlet segment which is equal to r/2. n finding the flow
parameters we took into consideration two terms of the series. The calculation that were carried out with
consideration of three and four terms of the series showed that the difference between the successive ap-
proximations is very small {agreement up to four significant figures). This indicates the rapid convergence
of the series, All of the determined integrals with respect tothe variabley were found numerically in the
calculations on the basis of the general Simpson formula,

A study of formula (29) and our calculations show that the qualitative aspect of the problem with re-
gard to the change in the heat flow is in good agreement with the experimental formula in [1, 2] and with
the generalized theoretical formula (4.1) in reference [11]. However, the absence of special experimental
data defining the heat flow under specified conditions prevents us from undertaking a direct quantitative
evaluation.

4, It follows from an examination of these results that significant intensification effect is reduced
slightly with an increase in the Reynolds number,

The studies of the heat-transfer results will probably be more valid for the core of the flow, since
it is in this region that the viscosity effect is less perceptible. However, it is not surprising that the form
of the motion here was found to resemble the motion of a liquid devoid of viscosity. As had been demon-
strated by Milovich [12], this is because the imposition of condition (1) on the flow automatically introduces
an actual viscosity effect.

The theoretical formulas derived above enable us most simply to establish the quantitative relation-
ships governing the change in heat flow from the kind and temperature of the liquid, from the velocity and
regime of the flow, from the diameter and length of the tube, etc., The excellent agreement in the qualita-
tive picture of the change in the heat flow can be regarded as confirmation of the fact that the analysis pro-
cedure had been properly chosen.

NOTATION

Qss Qy, Qp are the vortex components;
Uy, Uy, Ug are the velocity vector components;
A = const is the flow intensity coefficient;
is the temperature;
is the pressure;
is the density;
is the specific heat flow;
is the coefficient of thermal conductivity;
is the specific heat capacity;
= const is the angular velocity of the flow;
is the gas constant;
2

+U.y +u9,
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